OMP-based DOA estimation performance analysis

Mohammad Emadi, Ehsan Miandji and Jonas Unger

The self-archived postprint version of this journal article is available at Linköping University Institutional Repository (DiVA):
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-149841

N.B.: When citing this work, cite the original publication.

Original publication available at:
https://doi.org/10.1016/j.dsp.2018.04.006

Copyright: Elsevier
http://www.elsevier.com/
OMP-Based DOA Estimation Performance Analysis

Mohammad Emadia,*, Ehsan Miandjib,*, Jonas Ungerb

aQualcomm Technologies Inc., San Jose, CA, USA
bDepartment of Science and Technology, Linköping University, Sweden

Abstract

In this paper, we present a new performance guarantee for Orthogonal Matching Pursuit (OMP) in the context of the Direction Of Arrival (DOA) estimation problem. For the first time, the effect of parameters such as sensor array configuration, as well as signal to noise ratio and dynamic range of the sources is thoroughly analyzed. In particular, we formulate a lower bound for the probability of detection and an upper bound for the estimation error. The proposed performance guarantee is further developed to include the estimation error as a user-defined parameter for the probability of detection. Numerical results show acceptable correlation between theoretical and empirical simulations.

Keywords: Direction of Arrival, Orthogonal Matching Pursuit (OMP), Mutual Coherence, Array Configuration

1. Introduction

Estimating the direction of arrival (DOA) has been a ubiquitous problem in sensor array signal processing for decades \cite{1}. In many applications such as sensor networks, the received signal vector arriving at the antenna elements is sparse. Numerous methods have been proposed to formulate the DOA estimation as a sparse recovery problem \cite{2,3}. A substantial amount of work has been focused on utilizing ℓ_1 relaxation methods, such as \cite{4,5,6,7}, for DOA estimation.

*Equal contributor

Email addresses: memadi@qti.qualcomm.com (Mohammad Emadi), ehsan.miandji@liu.se (Ehsan Miandji), jonas.unger@liu.se (Jonas Unger)
estimation. In this direction, one of the first attempts is the seminal work of Gorodnitsky et al. [8], in which a recursive least-squares algorithm named FO-Cal Underdetermined System Solver (FOCUSS) is used for source localization. Fuchs [9, 10] has formulated the source localization as a sparse recovery problem in the beamspace domain. Cotter [11] combined Multiple Measurement Vectors (MMV) and Matching Pursuit (MP) [12] algorithms to solve the joint-sparse recovery problem in DOA estimation. In [13, 14, 15], the ℓ_1-SVD method combines the Singular Value Decomposition (SVD) step of the subspace algorithms with a sparse recovery method based on ℓ_1 minimization. Stoica et al. [16] extended this idea by utilizing the sparsity observed in the covariance matrix.

In general, the main disadvantage of ℓ_1 relaxation methods, as noted in [17], is high computational complexity. When the number of antenna elements becomes large, even the sub-optimal methods such as ℓ_1-SVD or the covariance-based techniques suffer from high computational and storage complexity. In many applications, memory and computational resources are scarce, hence the aforementioned methods cannot be efficiently implemented. For instance, wearable sensors need ultra-low power and low cost systems that prohibit the use of complex recovery algorithms. A compelling alternative to ℓ_1 relaxation methods is the family of greedy methods for DOA estimation, which are substantially faster and suitable for efficient implementation on low-power hardware [18, 19, 20, 21]. A well-known greedy algorithm is Orthogonal Matching Pursuit (OMP) [22], which has been shown to provide a reasonable trade-off between the computational complexity and the accuracy [23, 24, 25].

Despite low computational burden, greedy algorithms have received a surprisingly little attention for DOA estimation. In this direction, Yang et al. [26] have compared MP and Basis Pursuit (BP) [27] for a predefined beam pattern, however, without any theoretical analysis. In [28] and [29], a comparison of OMP and MP with MUSIC [1, 30] for DOA estimation is presented. Moreover, [31] presents a two stage and tree-based OMP method to achieve better accuracy, but without theoretical guarantees. Previous methods have only considered linear arrays of antennas, and the convergence of proposed approaches
is not analyzed thoroughly.

In this paper, we present a new theoretical analysis of the OMP algorithm in the context of DOA estimation. Unlike previous work involving performance guarantees for OMP, our analysis considers various parameters such as power variation of different sources (dynamic range of the system), SNR, number of antenna elements, and array configuration, as well as number of sources. Specifically, we will formulate a lower bound for the probability of detection and an upper bound for the estimation error of the received signal.

The paper is organized as follows: We will formulate the problem of DOA estimation as a sparse recovery framework in section 2. In section 3 mutual coherence will be introduced as a parameter related to the array configurations which, along with signal parameters, will be used in Section 4 to determine the probability of detection and the estimation error. Numerical results presented in section 5 demonstrate acceptable correlation to simulation outcomes for a large range of parameters. Finally, the paper will be concluded in section 6.

Notations - Vectors and matrices are denoted by boldface lower-case (e.g. s) and bold-face upper-case letters (e.g. A), respectively. Moreover, the elements of vectors and matrices are denoted s_n, and A_n,m, respectively. The jth column of a matrix, A, is denoted A_j. The transpose and the Moore-Penrose pseudo-inverse are denoted A^T and A^+, respectively. Given an index set, Λ, the sub-matrix A_Λ is formed from columns of A indexed by Λ. The ℓ₀ pseudo-norm of a vector s, denoted \|s\|₀, defines the number of non-zero elements. The index set of nonzero elements in s, also known as the support set, is denoted supp(s). Consequently, \|s\|₀ = |supp(s)|, where |.| denotes the set cardinality. Occasionally, the exponential function, e^x, is denoted exp(x).

2. Problem Definition

In this paper, for the sake of simplicity, we focus on the two-dimensional DOA estimation problem, i.e. we are interested in estimating the azimuth angles of the sources, and not the elevation. Define \(\Phi = [\phi_1, \ldots, \phi_N]^T \) to be the set
of all swept angles and $\boldsymbol{\theta} = [\theta_1, \ldots, \theta_\tau]^T$ to be the set of azimuth angles for τ sources, where $\tau < N$. Consider N signals s_n, where $n \in \{1, \ldots, N\}$, arriving at L antenna elements. The signal vector s is defined as follows:

$$s_n = \begin{cases} \sqrt{p_n}e^{j\psi_n} & \phi_n \in \phi, \\ 0 & \phi_n \notin \phi, \end{cases}$$

(1)

where p_n and ψ_n are the received signal power and phase from an illuminator placed at ϕ_n, respectively. The location of nonzero elements in s is called the support set, which we denote by Λ. The number of nonzero elements in s defines the sparsity of the signal and is measured using the ℓ_0 pseudo-norm, denoted $\tau = \|s\|_0$. From the discussion above it is evident that $\boldsymbol{\theta} = \phi_\Lambda$. We assume that the nonzero elements of the sparse signal s_n are zero-mean independent random variables with arbitrary distribution. Moreover, it is assumed that the random variables s_n are bounded. Hence we define

$$s_{\min} = \min(|s_i|), i \in \Lambda,$$

(2)

$$s_{\max} = \max(|s_i|), i \in \Lambda,$$

(3)

as deterministic parameters that are defined based on the requirements of the application at hand.

Let $y_l, l \in \{1, \ldots, L\}$, to be the received signal at the port of the lth antenna. The received signal at the antenna terminals, $\mathbf{y} = [y_1, \ldots, y_L]^T$, can be written as:

$$\mathbf{y} = \mathbf{A}(\phi)s + \mathbf{w},$$

(4)

where $s = [s_1, \ldots, s_n]^T$ and \mathbf{w} is the additive white Gaussian noise with covariance $\sigma^2 \mathbf{I}$. The matrix $\mathbf{A} = [\mathbf{A}_1, \ldots, \mathbf{A}_N] \in \mathbb{C}^{L \times N}$ is often called an array manifold matrix, where each column is called a steering vectors. Each of the N steering vectors contains gain and delay information from the nth source located at ϕ_n to the antennas. For example, elements of the nth steering vector for a uniform linear array are [1]

$$\mathbf{A}_n(l) = e^{jl(2\pi d/\lambda)\cos(\phi_n)},$$

(5)
where λ is the wavelength, and d is the spacing between antenna elements, and $j^2 = -1$.

Our final goal in the process of DOA estimation can be stated as finding the location of nonzero values in the signal s from the measurement y. The number of sources is usually much smaller than the total number of swept angles (i.e. θ is a small subset of ϕ); hence s is a sparse vector, making it suitable for sparse signal recovery algorithms. In some applications, such as sensor image processing, in addition to the location of nonzero components, it is required to estimate p_n and ψ_n.

3. Mutual Coherence

Many metrics exist for evaluating the suitability of an array manifold matrix for recovering the support of a sparse signal (i.e. DOA estimation). A few examples are: Mutual Coherence (MC) \[32\], Cumulative Coherence (CC) \[33\], Exact Recovery Coefficient (ERC) \[34\], and Restricted Isometry Constant (RIC) \[2\]. Among these metrics, RIC achieves tighter bounds, i.e. better performance guarantees for exact recovery. However, computing RIC for arbitrary dictionaries is NP-hard. On the other hand, computing ERC is a combinatorial problem, which is often intractable. A more appealing metric is the MC, which can be computed efficiently and has shown to provide acceptable performance guarantees \[35\], \[36\], \[37\], \[38\]. Our analysis is based on mutual coherence to provide a simple and practical framework for theoretical analysis of OMP in the context of DOA estimation.

The mutual coherence of an array manifold matrix is the absolute cross correlation between its steering vectors \[32\]:

\[
\mu_{a,b}(A) = \frac{|\langle A_a, A_b \rangle|}{\|A_a\|_2 \|A_b\|_2},
\]

(6)

\[
\mu_{\text{max}}(A) = \max_{1 \leq a \neq b \leq N} \mu_{a,b}(A),
\]

(7)

It should be noted that $\|A_i\|_2 = \sqrt{L}$, for all $i \in \{1, \ldots, N\}$. In what follows, we will calculate the mutual coherence for various array configurations.
Assume L array elements are placed on coordinates (x_l, y_l). Then, MC for an arbitrary array configuration can be formulated as follows:

$$
\mu(\phi_i, \phi_j) = \frac{1}{L} |\langle A_i, A_j \rangle| = \frac{1}{L} \left| \sum_{l=1}^{L} e^{-jk_0(x_l \cos \phi_i - \cos \phi_j) + y_l (\sin \phi_i - \sin \phi_j)} \right| ,
$$

(8)

where A_i is the steering vector of the incident wave from direction ϕ_i and k_0 is the wave number of the received signal. Assume that $\phi_j = \phi_i + \varepsilon$ and define the following:

$$
\alpha_{ij} = k_0 \cos \phi_i - \cos \phi_j) = 2k_0 \left[\sin \left(\phi_i + \frac{\varepsilon}{2} \right) \sin \left(\frac{\varepsilon}{2} \right) \right],
$$

(9)

$$
\beta_{ij} = k_0 \sin \phi_i - \sin \phi_j) = -2k_0 \left[\cos \left(\phi_i + \frac{\varepsilon}{2} \right) \sin \left(\frac{\varepsilon}{2} \right) \right].
$$

(10)

Then from (8) we have that

$$
\mu(\phi_i, \phi_j) = \frac{1}{L} \left| \sum_{l=1}^{L} e^{-j\alpha_{ij} x_l} e^{-j\beta_{ij} y_l} \right| .
$$

(11)

In the rest of this section, we consider the mutual coherence for different array configurations.

3.1. Uniform Linear Array (ULA)

Consider a ULA of L antenna elements placed at the following coordinates:

$$
\begin{align*}
 x_l &= ld, \\
 y_l &= 0,
\end{align*}
$$

(12)

where l is the antenna index and d is the distance between two adjacent antennas. Using (12), equation (11) can be simplified to:

$$
\mu_{\text{ULA}} = \frac{\sin \left(\frac{\alpha_{ij} Ld}{2} \right)}{Ld \sin \left(\frac{\varepsilon}{2} \right)}
$$

(13)

3.2. Uniform Circular Array (UCA)

Consider a UCA of L antennas with the following coordinates:

$$
\begin{align*}
 x_l &= R \cos \left(\frac{2\pi l}{L} \right), \\
 y_l &= R \sin \left(\frac{2\pi l}{L} \right),
\end{align*}
$$

(14)
where R is the radius of UCA. In such a setup, (11) becomes:

$$
\mu_{i,j}^{\text{UCA}} = \left| L^{-1} \sum_{t=1}^{L} e^{-j\alpha_{ij} R \cos\left(\frac{2\pi l}{L}\right)} e^{-j\beta_{ij} R \sin\left(\frac{2\pi l}{L}\right)} \right|.
$$

(15)

For large values of L, and defining $m = \frac{l}{L}$, we can estimate (15) as:

$$
\mu_{i,j}^{\text{UCA}} \approx \left| \frac{1}{J_0 \left(R \sqrt{\alpha_{ij}^2 + \beta_{ij}^2} \right)} \right|,
$$

(16)

where J_0 denotes the Bessel function.

3.3. Uniformly Distributed Array (UDA)

Assume that the coordinates of L antennas are uniformly distributed, i.e.

$$
\begin{aligned}
 x_l &\sim \text{unif}(a_x, b_x) \\
 y_l &\sim \text{unif}(a_y, b_y),
\end{aligned}
$$

(17)

where (a_x, b_x) and (a_y, b_y) denote the boundaries of the uniform distribution in x and y coordinates, respectively. According to the fact that the mutual coherence will also be a random variable, we only consider the expected value of the mutual coherence, defined as follows

$$
E\{\mu_{i,j}^{\text{UDA}}\} = L^{-1} \left| \sum_{l=1}^{L} \varphi_x(\alpha_{ij}) \times \varphi_y(\beta_{ij}) \right| = |\varphi_x(\alpha_{ij}) \times \varphi_y(\beta_{ij})|,
$$

(18)

where

$$
\begin{align*}
\varphi_x(\alpha_{ij}) &= E\{e^{-j\alpha_{ij} x_l}\} = \frac{e^{-j\alpha_{ij} b_x} - e^{-j\alpha_{ij} a_x}}{-j\alpha_{ij}(b_x - a_x)} \triangleq \varphi_x(\alpha_{ij}), \\
\varphi_y(\beta_{ij}) &= E\{e^{-j\beta_{ij} y_l}\} = \frac{e^{-j\beta_{ij} b_y} - e^{-j\beta_{ij} a_y}}{-j\beta_{ij}(b_y - a_y)} \triangleq \varphi_y(\beta_{ij}).
\end{align*}
$$

(19)

Note that in (18) we have dropped the subscript l since x_l and y_l, where $l \in \{1, \ldots, L\}$ are assumed to be independent and identically distributed. In the next section, we will use mutual coherence as a metric to derive performance guarantees for OMP.
To numerically demonstrate the effect of different array configurations on coherence, we consider two cases. In the first scenario, we place a source at $\pi/2$ (broadside) and in the second scenario we place it at 0 degrees (end-fire). For both cases, a second source was swept with respect to ϕ_j, and μ_{max} is measured. These scenarios are repeated for different array configurations. The coherence between these arrays for broadside and end-fire cases is shown in Figures 1 and 2, respectively. We assume 31 antenna elements placed in an $16\lambda \times 16\lambda$ area, where λ is the wavelength.

It is evident in Figure 1 that the linear array has lower side lobes, which implies that the mutual coherence decreases more quickly than the circular and random arrays. However, the linear array suffers from two problems: the grating lobe, see Figure 1, and the end-fire beamwidth, see Figure 2. Indeed Figure 2 shows the high value of the mutual coherence when the first source is placed at zero degrees and the second source becomes close to the first one. In contrast, the circular array shows better mutual coherence at the end-fire angles but worse performance when received signals are far from each other. Random array configurations compromise these effects. One of the major advantages of the random array configuration is the semi-random behavior of mutual coupling between array elements [39, 40].
4. OMP Performance Guarantee

The main drawback of the OMP algorithm, and greedy methods in general, is that if the support is estimated incorrectly in one iteration, the error will propagate in the consequent iterations \([34]\). Therefore, in many applications, such as DOA estimation, it is critical to identify the conditions under which this algorithm converges to the correct solution. These conditions should indeed consider signal parameters, i.e. parameters related to the received signal, \(y\), as well as the design of the DOA estimation system, i.e. parameters related to the array manifold matrix, \(A\).

Below, we present our theoretical results for DOA estimation using OMP. Theorem 1 will present a lower bound for the probability of detection.

Theorem 1. Let \(y = As + w\), where \(A \in \mathbb{C}^{L \times N}\) is the array manifold matrix with mutual coherence \(\mu_{\text{max}}\). Assume that \(w \sim \mathcal{N}(0, \sigma^2 I)\) and define \(\tau = ||s||_0\). Then, the probability of detection, denoted \(\Pr\{\text{det.}\}\), for DOA estimation using OMP is lower bounded by

\[
\Pr\{\text{det.}\} \geq 1 - 4N \exp \left(\frac{-(Ls_{\text{min}} - 2\beta)^2}{16\gamma^2 L^2 \frac{1}{N} + 8L^2 \gamma(Ls_{\text{min}} - 2\beta)} \right) \left(1 - N \sqrt{\frac{2\sigma^2}{\pi \beta^2 L}} e^{-\frac{\beta^2}{2L\sigma^2}} \right),
\]

(21)

\(\phi_\text{s}(\text{source separation in degrees})\)

Figure 2: End-fire mutual coherence
where \(\gamma = \mu_{\text{max}}s_{\text{max}} \) and \(\beta \) is a non-negative constant such that \(|\langle A_j, w \rangle| \leq \beta, \forall j \in \{1, \ldots, N\} \), and \(L_{s_{\text{min}}} \geq 2\beta \).

The proof of the Theorem is postponed to the Appendix.

Assuming that OMP correctly identifies the DOA of sources, in some applications we need to accurately estimate the amplitude and phase of the received signals, i.e. the individual values of \(s \) rather than the location of nonzero entries.

We expand the results obtained in Theorem 5.1 of [35] to formulate an upper bound for the absolute error:

\[
E_{\text{abs}} \triangleq \| s - \hat{s} \|^2_2 \leq \frac{\tau \beta^2}{L^2 (1 - \mu_{\text{max}} (\tau - 1))^2}, \tag{22}
\]

where \(\hat{s} \) is the sparse signal estimated by OMP.

In what follows, using (21) and (22), we derive new bounds for the probability of detection while taking into account DR, SNR, and estimation error. These bounds highlight the importance of each parameter for different applications.

We define the DR and SNR of the signal as follows

\[
\text{DR} = \left(\frac{s_{\text{max}}}{s_{\text{min}}} \right)^2, \tag{23}
\]

\[
\text{SNR} = \left(\frac{s_{\text{min}}}{\sigma} \right)^2. \tag{24}
\]

Moreover, we define the relative error, denoted \(E_{\text{rel}} \), as follows

\[
E_{\text{rel}} \triangleq \frac{E_{\text{abs}}}{\sum_{n=1}^{N} s_n} \leq \frac{E_{\text{abs}}}{\tau s_{\text{min}}^2} \leq \frac{\beta^2}{L^2 s_{\text{min}}^2 (1 - \mu_{\text{max}} (\tau - 1))^2}. \tag{25}
\]

In direction finding systems, we are more interested in identifying the support of the received signal vector and the accuracy of non-zero values in \(s \) is of lesser importance. Hence, \(E_{\text{rel}} \) can be rather high. In contrast, if an accurate estimate of the received signals (in terms of phase and amplitude) is required, a small value for \(E_{\text{rel}} \) is preferable. Evidently, the parameter \(E_{\text{rel}} \) should be set based on the specific sensor application. Therefore, in what follows we derive “user-friendly” probability of detection bounds based on (21) and a given
E_{rel}. We approach this problem by considering the two terms in (21) separately. Isolating β in (25) we obtain

$$\beta^2 \geq L^2 \rho^2 s_{\text{min}}^2 E_{rel}, \quad (26)$$

where $\rho^2 = (1 - \mu_{\text{max}}(\tau - 1))^2$ is defined for notational brevity. Substituting this lower bound for β in the second term of (21), and using (23) and (24), we get

$$1 - \frac{N}{L} \sqrt{\frac{2}{\pi \rho^2 E_{rel} L \text{SNR}}} e^{-E_{rel} \rho^2 L \text{SNR}/2}. \quad (27)$$

We need to apply a similar procedure to the first term of (21). Assume that $L s_{\text{min}} \gg 2 \beta$. It will be shown that this is indeed a weak assumption. Without loss of generality we define the upper bound

$$\beta^2 \leq \alpha L^2 \sigma^2 \ll L^2 s_{\text{min}}^2, \quad (28)$$

for an arbitrary constant $\alpha \geq 0$. Combining (26) and (28), we obtain a lower bound for α:

$$\alpha \geq L \rho^2 \text{SNR} E_{rel}, \quad (29)$$

which together with (28) results in

$$L \rho^2 \text{SNR} E_{rel} \leq \alpha \ll \frac{\text{LSNR}}{4}. \quad (30)$$

In other words, we have

$$E_{rel} \ll \frac{1}{2 \rho^2} \quad (31)$$

Consequently, given (31), we can use (28) to approximate $(L s_{\text{min}} - 2 \beta)^2$ with $L^2 s_{\text{min}}^2$ in (21). Using this approximation together with (23), (24), and (27), we can rewrite (21) as follows

$$\Pr\{\text{det.}\} \geq \left(1 - 4N \exp \left(\frac{-1}{16 \tau^2 \rho_{\text{max}}^2 \text{DR} \sigma^2} + \frac{8 \mu_{\text{max}} \sqrt{\text{DR}}}{3 \sqrt{2}} \right)\right) \times \left(1 - \frac{N}{L} \sqrt{\frac{2}{\pi \rho^2 E_{rel} L \text{SNR}}} e^{-E_{rel} \rho^2 L \text{SNR}/2}\right). \quad (32)$$

As it can be seen, the first term of (32) is independent of the noise characteristics of the signal. This term takes into account important signal and array
parameters such as DR, \(\tau \), and \(\mu_{\text{max}} \). On the other hand, SNR and the user-defined relative error are two important parameters in the second term of (32). This is an important distinction of our analysis compared to previous work on OMP performance [38]. Previous work have only considered the second term of (32) as the lower bound for the probability of detection without considering the effect of DR.

Assuming SNR is very high, the second term of (32) becomes negligible. Consequently, the probability of detection is approximately lower bounded by

\[
1 - 4N \exp \left(- \frac{1}{16\tau^2 \mu_{\text{max}}^2 \text{DR}} + \frac{8\mu_{\text{max}} \sqrt{\text{DR}}}{3\sqrt{2}} \right).
\]

Equation (33) is particularly useful when for instance the sources are very close to the sensor, leading to a very high SNR, which could also be true when the RCS or transmitted power is very high. As a result, in these cases SNR is very high and the angle separation between the sources, i.e. \(\mu_{\text{max}} \), and the power ratio of the sources, i.e. DR, become the predominant parameters.

Assume that \(\mu_{\text{max}} \) is very small, which is valid when the number of antenna elements becomes large or when the minimum distance between sources is relatively high. In this case, the probability of detection will be simplified to

\[
1 - \frac{N}{L} \sqrt{\frac{2}{L\pi SNR E_{\text{rel}}}} e^{-LE_{\text{rel}}/SNR/2}.
\]

Since mutual coherence is small, the effect of a high power source next to a low power one will be negligible. Consequently, the probability of detection is dominated by SNR and is independent of DR, which is confirmed by (34).

5. Numerical Results

To verify Theorem [1] we compare numerical results of Theorem [1] and simulation results obtained from OMP with respect to SNR, DR, \(\tau \), and \(E_{\text{rel}} \). Ten linear antenna elements randomly distributed in a 7\(\lambda \) distance is assumed. Due to the random distribution, we do not have grating/shadowing lobe and the coupling effect is negligible. For the numerical results we report in this section
we use the probability of error. Given the probability of detection defined in [21], the probability of error is defined as $\Pr\{\text{error}\} \leq 1 - \Pr\{\text{det.}\}$. This conversion facilitates the depiction of the effect of various parameters in the plots.

In Fig. 3 we show the effect of SNR and E_{rel} on the probability of error. For this simulation, only one source was assumed. We set $N = 50$ and swept SNR from -5dB to 30dB. The iterations of OMP terminate when the residual is less than the predefined E_{rel}. To calculate the probability of error, we compare the estimated DOA with the true DOA of the source. If this error becomes higher than π/N, we assume it is an incorrectly estimated DOA. We perform 5×10^6 trials of this simulation and calculate the empirical probability of error as the ratio of unsuccessful trials to total number of trials. In each trial, the location of the source was selected uniformly at random. For analytical results, we evaluate (32). As can be seen in Fig. 3, higher E_{rel} will result in lower probability of error and there is acceptable correlation between simulation and analytical results.

The effect of DR and the number of sources (τ) on the probability of error
is shown in Fig. 4. For simulation results, we placed 2 to 6 sources with minimum angle separation of π/N randomly in space. The relative error is set to $E_{rel} = 0.1$ and the simulation was run 5×10^6 times. In addition, we assume the SNR is very high (50dB) and the probability of error was calculated as before. As it can be seen, there is a strong correlation between simulation and analytical results across different parameters. It is clear that when the number of sources become larger (e.g. higher than 4), even for a small value of DR, the performance of OMP degrades significantly. In addition, when the power ratio becomes higher than 10, even for two sources the probability of error is very high.

As mentioned in section 4, the array configuration, and hence the mutual coherence, has an important effect on the probability of error. To compare ULA, UCA and UDA, in terms of the probability of error with respect to DR and SNR, we proceed as follows. For ULA and UDA, ten antenna elements in a linear and random configuration are distributed over 7λ distance respectively. For UCA we put ten antenna elements on a circle with 7λ diameter. The relative error was set to $E_{rel} = 0.16$, so that the iterations of OMP terminate when the
residual relative error is smaller than E_{rel}.

In Fig. 5, we compare the performance of different array configurations versus SNR for one source, i.e. $\tau = 1$. The SNR is swept from -5dB to 30dB. To calculate the probability of error, we compare the estimated DOA with the true DOA of the source. If the error becomes higher than 3.6 degrees, we assume it is an incorrectly estimated DOA. We perform 5×10^6 trials of this simulation. As before, the location of the source was selected uniformly at random in each trial. It is evident from Fig. 5 that the ULA suffers from grating lobe and it results in worse performance compared to UCA and UDA.

Figure 6 demonstrates the effect of array configurations on the probability of error with respect to DR. We placed three sources with minimum angle separation of 3.6 degrees randomly in space. The relative error is set to $E_{rel} = 0.1$ and the simulation was run for 5×10^6 times. On top of that, we assume the SNR is very high (50dB). As can be seen, the performance of UDA is much better compare to ULA and UCA. Indeed, the performance of ULA is degraded because of the grating lobe, as well as large beam width (high mutual coherence value) in the end fire case. On the other hand, the performance of UCA is also
6. Conclusion

In this paper, for the first time, we presented an analytical discussion for using OMP in DOA estimation using arbitrary array configurations. We showed that the proposed probability of detection is in compliance with simulation results. In addition we proposed several practical formulas with respect to DR, SNR, estimation error, number of sources, angle separation, and the number of antennas. These “user-friendly” bounds can be used as a design methodology for different applications. An interesting venue for future work is to derive new bounds for the probability of detection with respect to the mutual coherence of different array configurations (e.g. see (13), (15), and (18)).

Appendix A. Proof of Theorem 1

The main tool in the proof of Theorem 1 is the following lemma:
Lemma 1. Let $A \in \mathbb{C}^{L \times N}$ be the array manifold matrix. Define $\Gamma_j = L^{-1} |\langle A_j, As + w \rangle|$, for any $j \in \{1, \ldots, N\}$, where $w \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$, $\|s\|_0 = \tau$, and the nonzero elements of s are centered complex valued random variables. Assume that $|\langle A_j, w \rangle| \leq \beta$, for all $j \in \{1, \ldots, N\}$. Then for some constant $\xi \geq 0$, such that $\xi \geq \frac{\beta}{L}$, the following inequality holds:

$$\Pr \{ \Gamma_j \geq \xi \} \leq 4 \exp \left(- \frac{\left(\xi - \frac{\beta}{L} \right)^2}{4 \left(N^{-1} \tau^2 \mu_{\text{max}}^2 \sigma^2 + \frac{\mu_{\text{max}} \sigma \tau}{\sqrt{2}} \right)} \right),$$ \hfill (A.1)

Proof. Expanding Γ_j, it is straightforward to show that:

$$\Gamma_j = L^{-1} |\langle A_j, As + w \rangle| = L^{-1} \left| \sum_{l=1}^{L} A_{l,j}^* \left(\sum_{n=1}^{N} A_{l,n}s_n + w_l \right) \right| = \left| \sum_{n=1}^{N} \left\{ L^{-1} \sum_{l=1}^{L} A_{l,j}^* A_{l,n}s_n + \frac{1}{LN} \sum_{l=1}^{L} A_{l,j}^* w_l \right\} \right|. \hfill (A.2)$$

From (6) we have that

$$\mu_{j,n} = \frac{\sum_{l=1}^{L} A_{l,j}^* A_{l,n}}{\sqrt{L} \sqrt{L}}. \hfill (A.3)$$

Combining (A.2) and (A.3) we get

$$\Gamma_j = \left| \sum_{n=1}^{N} \left\{ \mu_{j,n}s_n + \frac{1}{LN} \langle A_j, w \rangle \right\} \right|, \hfill (A.4)$$

and therefore we have

$$\Pr \{ \Gamma_j \geq \xi \} \leq \Pr \left\{ \sum_{n=1}^{N} \mu_{j,n}s_n + \frac{1}{LN} \sum_{n=1}^{N} \langle A_j, w \rangle \geq \xi \right\} \hfill (A.5)$$

$$\leq \Pr \left\{ \sum_{n=1}^{N} \mu_{j,n}s_n \geq \xi - \frac{\beta}{L} \right\}. \hfill (A.6)$$

Given that s_n are complex random variables, equation (A.6) can be upper bounded by

$$\Pr \{ \Gamma_j \geq \xi \} \leq \Pr \left\{ \sum_{n=1}^{N} \text{Re}\{\mu_{j,n}s_n\} \geq \frac{\xi - \frac{\beta}{L}}{\sqrt{2}} \right\} +$$

$$\Pr \left\{ \sum_{n=1}^{N} \text{Im}\{\mu_{j,n}s_n\} \geq \frac{\xi - \frac{\beta}{L}}{\sqrt{2}} \right\}. \hfill (A.7)$$
Our goal is to calculate an upper bound for the right-hand side of (A.7). For this purpose we use the Bernstein inequality [41]. According to Bernstein inequality if \(x_n\) are real-valued centered and independent random variables, where \(\Pr\{|x_n| \leq c\} = 1\) and \(E\{x_n^2\} \leq \nu\), then we have

\[
\Pr\left\{\left|\sum_{n=1}^{N} x_n\right| \geq \xi\right\} \leq 2 \exp\left(-\frac{\xi^2}{2\left(N \nu + \frac{c^2}{3}\right)}\right) \tag{A.8}
\]

It is obvious that the real-valued variables \(\text{Re}\{\mu_{j,n}s_n\}\) and \(\text{Im}\{\mu_{j,n}s_n\}\) in (A.7) are independent centered random variables because of our assumption on \(s_n\).

Additionally, the following inequalities hold

\[
|\text{Re}\{\mu_{j,n}s_n\}| \leq |\mu_{j,n}s_n| \leq \mu_{\text{max}}s_{\text{max}}, \tag{A.9}
\]

\[
E\{\text{Re}\{\mu_{j,n}s_n\}^2\} \leq E\{|\mu_{j,n}s_n|^2\} \leq \frac{1}{N} \sum_{n=1}^{N} |\mu_{j,n}|^2 E\{|s_n|^2\} \leq \frac{\tau}{N}\mu_{\text{max}}^2 s_{\text{max}}^2, \tag{A.10}
\]

Indeed the same inequalities hold for \(\text{Im}\{\mu_{j,n}s_n\}\). Hence we can apply the Bernstein inequality on both terms on the right-hand side of (A.7). We obtain

\[
\Pr\{\Gamma_j \geq \xi\} \leq 4 \exp\left(-\frac{\left(\xi - \frac{\Theta}{\sqrt{2}}\right)^2}{4 \left(\frac{\tau^2}{N} \mu_{\text{max}}^2 s_{\text{max}}^2 + \frac{\mu_{\text{max}} s_{\text{max}} (\xi - \frac{\Theta}{\sqrt{2}})}{3\sqrt{2}}\right)}\right) \tag{A.11}
\]

\[
\leq 4 \exp\left(-\frac{\left(\xi - \frac{\Theta}{\sqrt{2}}\right)^2}{4 \left(\frac{\tau^2}{N} \mu_{\text{max}}^2 s_{\text{max}}^2 + \frac{\mu_{\text{max}} s_{\text{max}} (\xi - \frac{\Theta}{\sqrt{2}})}{3\sqrt{2}}\right)}\right), \tag{A.12}
\]

which completes the proof. \(\Box\)

Proof of Theorem I. Define \(\Lambda_0\) as the true support of \(s\). It has been shown in [42] that assuming \(|\langle A_j, w\rangle| \leq \beta\), OMP estimates the true support if:

\[
\min_{j \in \Lambda_0} |L^{-1}\langle A_j, A_{\Lambda_0}s_{\Lambda_0} + w\rangle| \geq \max_{k \notin \Lambda_0} |L^{-1}\langle A_k, A_{\Lambda_0}s_{\Lambda_0} + w\rangle|, \tag{A.13}
\]

where \(A_{\Lambda_0}\) is formed using the columns of \(A\) indexed by the support set \(\Lambda_0\).

Using the triangle inequality, we can rewrite the term on the left-hand side of
From (A.13) and (A.14), we can say that the OMP converges to the true support if:

\[
\begin{cases}
\max_{k \notin \Lambda_0} \{\Gamma_k\} < \min_{j \in \Lambda_0} \frac{|s_j|}{2}, \\
\max_{j \in \Lambda_0} \left|L^{-1}(A_j, A_{\Lambda_0 \setminus\{j\}}s_{\Lambda_0 \setminus\{j\}} + w)\right| < \min_{j \in \Lambda_0} \frac{|s_j|}{2},
\end{cases}
\]

(A.15)

Using (A.15) we can define the probability of error for OMP as:

\[
\Pr\{\text{error}\} = \Pr\left\{ \max_{j \in \Lambda_0} \left|L^{-1}(A_j, A_{\Lambda_0 \setminus\{j\}}s_{\Lambda_0 \setminus\{j\}} + w)\right| \geq \frac{s_{\min}}{2} \right\} + \Pr\left\{ \max_{k \notin \Lambda_0} \{\Gamma_k\} \geq \frac{s_{\min}}{2} \right\},
\]

(A.16)

with an upper bound defined as:

\[
\Pr\{\text{error}\} \leq \sum_{j \in \Lambda_0} \Pr\left\{ L^{-1} |(A_j, A_{\Lambda_0 \setminus\{j\}}s_{\Lambda_0 \setminus\{j\}} + w) | \geq \frac{s_{\min}}{2} \right\} + \sum_{k \notin \Lambda_0} \Pr\left\{ \Gamma_k \geq \frac{s_{\min}}{2} \right\}.
\]

(A.17)

For the first term on the right-hand side of (A.17), excluding the summation over all indices in the support, from Lemma 1 we have:

\[
\Pr_{j \in \Lambda_0} \left\{ L^{-1} |(A_j, A_{\Lambda_0 \setminus\{j\}}s_{\Lambda_0 \setminus\{j\}} + w) | \geq \frac{s_{\min}}{2} \right\} \leq 4 \exp\left(\frac{-(Ls_{\min} - 2\beta)^2}{16N^{-1}(\tau - 1)^2L^2\gamma^2 + 3L\gamma(Ls_{\min} - 2\beta)^2/3\sqrt{2}} \right),
\]

(A.18)

where we have defined \(\gamma = \mu_{\max}s_{\max} \) for notational brevity. Note that unlike Lemma 1 where \(\Gamma_j \) was written as sum of \(N \) random variables, in (A.18) the
matrix A is only supported on $\Lambda_0 \setminus \{j\}$, i.e. all the indices in the true support excluding j. Therefore the term $(\tau - 1)$ appears in the denominator of (A.18) after applying the Bernstein inequality.

Similarly, for the second term on the right-hand side of (A.16) we can show that

$$
\Pr_{k \notin \Lambda_0} \left\{ \Gamma_k \geq \frac{s_{\min}}{2} \right\} \leq 4 \exp \left(\frac{-\left(Ls_{\min} - 2\beta\right)^2}{16N^{-1} \tau^2 L^2 \gamma^2 + \frac{8L^2 \gamma (Ls_{\min} - 2\beta)}{3\sqrt{2}}} \right), \quad \text{(A.19)}
$$

where we used the fact that the matrix A in Γ_k is supported on Λ_0, see right-hand side of (A.13). Using the upper bounds P_1 and P_2 obtained in (A.18) and (A.19), we can rewrite (A.17) as

$$
\Pr\{\text{error}\} \leq \tau P_1 + (N - \tau)P_2, \quad \text{(A.20)}
\leq NP_2, \quad \text{(A.21)}
$$

where (A.21) follows since $P_2 > P_1$. Since we have assumed that $|\langle A_j, w \rangle| \leq \beta$,

the probability of error will be the joint probability of the event $\Pr\{|\langle A_j, w \rangle| \leq \beta\}$

and the inverse of (A.21). A lower bound was formulated for $\Pr\{|\langle A_j, w \rangle| \leq \beta\}$ in [42], however when A has normalized columns. A simple extension of this

bound to account for an array manifold matrix with $\|A_i\|_2 = \sqrt{L}$ yields

$$
\Pr\{|\langle A_j, w \rangle| \leq \beta\} \geq 1 - \sqrt{\frac{2\sigma^2}{\pi^2 L \beta^2}} e^{-\frac{\beta^2}{\pi^2 \sigma^2}}, \quad \text{(A.22)}
$$

Since $|\langle A_j, w \rangle| \leq \beta$ should hold for all $j \in \{1, \ldots, N\}$, we have

$$
\Pr_{j=1,\ldots,N}\{|\langle A_j, w \rangle| \leq \beta\} \geq (1 - P_3)^N \geq 1 - NP_3. \quad \text{(A.23)}
$$

Inverting (A.21) and combining the result with (A.22) leads to (21), completing the proof.

[19] H. Rabah, A. Amira, B. K. Mohanty, S. Almaadeed, P. K. Meher, Fpga implementation of orthogonal matching pursuit for compressive sensing re-

24
sparse representations with partial support information, IEEE Transactions
2278179.

[37] T. Cai, L. Wang, G. Xu, Stable recovery of sparse signals and an oracle
3522. doi:10.1109/TIT.2010.2048506.

[38] D. Donoho, M. Elad, V. Temlyakov, Stable recovery of sparse overcom-
plete representations in the presence of noise, Information Theory, IEEE

[39] M. Emadi, K. Sadeghi, DOA estimation of multi-reflected known signals in
compact arrays, Aerospace and Electronic Systems, IEEE Transactions on

[40] M. Emadi, K. Sadeghi, Coupling compensation for unmatched circular ar-
rays in high-frequency applications, Radar, Sonar Navigation, IET 6 (8)

[41] J. Klemelä, Smoothing of Multivariate Data: Density Estimation and Vi-

[42] Z. Ben-Haim, Y. Eldar, M. Elad, Coherence-based performance guaran-
tees for estimating a sparse vector under random noise, Signal Processing,
2052460.

Biography

Mohammad Emadi received his B.Sc. degree from the University of
Tehran, Iran in 2004, and his M.Sc. and Ph.D. degrees from Sharif University
of Technology, Tehran, Iran in 2006 and 2012 respectively, both in electrical
engineering. He worked for six years as a lead designer at communication systems
group in the Sharif University Research Center to develop wireless communica-
tion links and sensors using phased array antennas. He was also a manager
of Tolou Research Center at Sharif University from 2011 to 2012. From 2013
to 2014, He worked as a postdoctoral research associate at Ultra-High-speed
Nonlinear Integrated Circuit (UNIC) lab, Cornell University on sub-millimeter
wave imaging systems especially for health care applications, where he won the
Cornell Electrical and Computer Engineering Innovation Award. Currently, he
is working at Qualcomm Inc. in San Jose as a Senior Staff Manager, focusing
on low power sensors, WiFi and small cell communication links. He received
the Best Researcher of 2009 from the Ministry of Science, and he was also the
recipient of the Silver Medal of the Physics Olympiad (1999) and honored at
IEEE Paper Contest in Iran.

Ehsan Miandji received his B.Sc. degree from Azad University, Tehran,
Iran in 2008 and his M.Sc. in computer graphics from Linköping University,
Sweden in 2012. Currently, he is a Ph.D. student at the Department of Science
and Technology, Linköping University, Sweden. His research interests include
compressed sensing and dictionary learning, with applications to lightfield imag-
ing and photo-realistic rendering.

Jonas Unger is an associate professor at the Department of Science and
Technology at Linkping University. At this position, he is leading the computer
graphics and image processing group (13 FTEs) consisting of senior researchers,
PhD students and research engineers. The vision of the group is to research and
develop new theory and technology for computational imaging by fusing computer
graphics, vision and sensors with human perception and machine learning.
With a strong foundation in the theoretically oriented research, the group is ac-
tive within a number of industrial and academic collaborations directed towards
development of state-of-the-art applications ranging from 3D-reconstruction of
scenes, photorealistic image synthesis and digitization of optical material prop-
erties to computer vision for heart surgery and perceptual display algorithms.
Ungers research have been published in over 60 journal articles, conference papers and book chapters. He received his PhD from Linkping University in 2009, became docent in 2015 and has during and after his PhD spent about two years as a visiting researcher at University of Southern California, USA.