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1 Introduction analysis using the TMOs listed above. The TMOs were evaluated
in a rating experiment using the following attributes: ovebailjjht-

In this supplemental material we present some of the details that ness overallcontrast overall colorsaturation temporal colocon-

did not t in the main manuscript. In Section 2 we describe our sistency temporal ickering, ghostingand excessivaoise In ad-
method to compare the proposed tone mapping method to previ-dition to these, we also added an attributedetail reproduction to
ous work, were a qualitative evaluation is executed. To motivate assess local contrast in the tone mapped sequences.

the number of iterations needed for the detail extraction Iter pre- . . . .

sented in the paper, Section 3 describes an experiment to motivatel "€ experiment was carried out in a controlled environment: all
this selection. Finally, in Section 4 we perform an analysis of the CliPS were viewed on a 241920 1200 colorimetric LCD (Nec

tone reproduction over time, and how the different parts of the tone PA241W), with a peak luminance of 200 cd/imThe observers
mapping affect the nal outcome. were placed at approximately 3 display heights (97 cm) distance

from the display, in a dim room.

2 Subjective evaluation The tone mapped sequences were displayed in a random order, and
10 observers experienced in digital imaging rated the visibility/level
To evaluate the visual quality of our tone mapping approach, we of the image attributes for each operator and sequence. The nal re-
compared it to six current state-of-the-art video tone mapping op- sult of the ratings, averaged over the observers, is illustrated in Fig-
erators: ure 1. Overall it is clear that the proposed noise aware TMO consis-
) tently produces results that show image characteristic at about just
Mal-adaptation TMO, [Irawan et al. 2005]

the right level without visible artifacts.
Display-adaptive TMO, [Mantiuk et al. 2008] In Figure 1, the most problematic sequence, showing highest rating

Virtual exposures TMO, [Bennett and McMillan 2005] of a single artifact for our TMO, is th&mith hammeringideo.
) The sequence exhibits a high level of noise, which is very dif cult
Temporal coherence TMO, [Boitard et al. 2012] to completely hide in this dark scene. However, the only operator

that produces a result with noise less visible is the Virtual exposures
TMO, which essentially is targeted at noise reduction and performs
Motion path lItering TMO, [Aydin et al. 2014] a computationally expensive ltering over time.

Zonal temporal coherence TMO, [Boitard et al. 2014]

The selected operators are: the two best performing TMOs (Mal-
adaptation and Display adaptive), and the best performing local Discussion  Even though some previous methods show good re-
TMO (Temporal coherence), from the evaluation in [Eilertsen et al. sults in the qualitative analysis, conceptual differences and details
2013]. We also included the Virtual exposures TMO since it is con- dif cult to evaluate in this way still motivate the need for the real-
ceptually similar to our approach. Finally, we included the Zonal time and noise-aware tone mapping approach. Below, we summa-
temporal coherence and Motion path Itering TMOs as they rep- rize the analysis, to put our TMO into context to the other operators,
resent the state-of-the-art in the eld and were recently published. and present a short discussion on the features of each operator:
For the comparison we used four sequences from [Froehlich et al.
2014]. Gamma mapped example frames from the sequences, to
gether with histograms calculated over all the frames, are shown in
Figure 2. The results of applying the different operators on these
sequences are demonstrated in Figure 3, 4, 5 and 6. For demonstr
tions of the tone mappings over time, we refer to the supplemental

video. The Display-adaptive TMO [Mantiuk et al. 2008] relies on a

In Figure 3, the magni ed parts of the images show examples of global tone curve and have problems in maintaining the contrast
the tone mappings in low and high luminance areas, respectively, in If the dynamic range in the input is too large. This is the only one

order to highlight differences of the operators. The previous TMOs ©f the previous methods which adapts to the viewing environment.
either show problems in compressing the dynamic range, or in re- However, the tone curve calculations are relatively expensive, and
producing details without artifacts. In contrast to this, our local tone real-time performance is dif cult.

curves successfully compress the dynamic range without sacri cing
contrast. Also, using our approach image details are rendered with
no visible artifacts.

The Mal-adaptation TMO [lrawan et al. 2005] produced results
with overall small amounts of artifacts. However, utilizing a global
tone curve, there are inevitable problems with detail reproduction
and maintaining contrast for compression of footage exhibiting a
arge dynamic range.

TheVirtual exposures TMO [Bennett and McMillan 2005] uses a
bilateral Iter to preserve or enhance details. However, as demon-
strated in the paper, this may generate visible artifacts in some situ-
ations, especially for detail enhancements. There are also problems
Qualitative analysis  In order to evaluate the performance of our in adapting the tone curve over time, resulting in disturbing icker-
TMO and how well we addressed the different challenges in tone ing artifacts. Since a bilateral Iltering operates also in the temporal
mapping (image noise, large contrasts, ringing, ghosting, temporal domain, the method is time-consuming and not suited for real-time
ickering, and display adaptivity), we also conducted a qualitative applications.
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Figure 1: Qualitative analysis result, showing the average ratings from the conducted experiment, with error bars for the standard errors.

TheTemporal coherence TMO[Boitard et al. 2012] ensures tem-
poral brightness coherency for arbitrary TMOs in a pre-processing

method requires a time-consuming ltering process, i.e. the method
is computationally expensive and not suited for real-time applica-

step. However this comes at the cost of reduced contrast and time-tions.

consuming pre-processing.

The Zonal temporal coherence TMQ, [Boitard et al. 2014] uses

local temporal coherence calculations to better preserve the over-

all contrast compared to the Temporal coherence TMO. However,
extensive pre-processing is still required, making the method un-
suitablee.g.for online applications.

TheMotion path ltering TMO [Aydin et al. 2014] is essentially

a ltering algorithm for tone mapping. In terms of the qualitative
analysis, the method produces results without visible artifacts and
manage to reproduce image characteristic quite well. However,

In contrast to these methods, our video tone reproduction can han-
dle large variations in dynamic range due to the local tone curves
used. Even for extreme dynamic range compression, details are ef-
fectively preserved or enhanced using the stable spatial Itering ap-
proach, which is speci cally tailored for use in the context of tone
mapping. Furthermore, noise is effectively hidden with the noise-
aware capabilities of the tone curves, and the tone curves adapt to
the speci ¢ display and viewing environment. Finally, all compu-
tations run in frame rates above real-time, even for high resolution
(1080p) material, making it suitable for real-time and online appli-
cations.

the method does not consider the actual tone reproduction (tone

curve) and temporal behavior of the tone curve, but relies on pre-
vious TMOs. As demonstrated in the main paper, the spatial Iter
in some cases produces artifacts which may become disturbing if
detail manipulation is required. Also, the optical ow ltering may
not work well in complicated image transitions (smg.the noise
level in thesmith hammeringequence in Figure 1). Finally, the

3 Convergence analysis of detail extraction

To estimate and motivate the appropriate number of iterations for
the diffusion simpli cation presented in the paper, we here provide
a numerical demonstration on the convergence rate of the fast de-
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Figure 2: HDR video sequences used in the qualitative evaluation (a-d), together with histograms calculated over all frames in the sequences
(e-h), to show the spatial as well as temporal dynamic range. Sequences from [Froehlich et al. 2014].

tail extraction diffusion Iter. This is carried out using an arti cial  ations, so that the only difference with increasing iterations is the
2D signal with a range of different edge properties, see Figure 7(a). distance of the diffusion. For the full detail extraction diffusion |-

To this signal we add details, Figure 7(b). The details are repre- ter, the size of the local neighborhood is chosen such that the same
sented by normally distributed noise, at three different scales; per-total Iter size is achieved, that isSN is the same for alN .

gg(g '1(‘)’3:)(’)'][‘ ?Hee}ma\gljvéﬂ\:viﬂtzh? %ﬂi;e;ﬁgﬂgl T% tr?oiqg;?w)grggﬂynsid- As can be seen, the error_drastically decrease at rst, and then_ at-
ered a case generalizing to all situations, since natural images may/€"S out. The optimal ratio between performance and approxima-
show different statistics of the image details, and since the qual- 10N lies somewhere around 10-15 iterations. This varies slightly
ity of the detail extraction in the end is a subjective measure. We with the input material and the parameter settings used. However,

rather present this to give an indication on performance and the best2bout 10-15 iterations usually is a good choice, and we X this pa-
choice of diffusion iterations. rameter to 12 for all examples we show.

In Figure 7(d) the mean squared error of the detail extraction is 4 Behavior of temporal tone curve

plotted as a function of the number of diffusion iterations. The

three curves show the result for anisotropic diffusion, diffusion To highlight the characteristics of the tone curves, and how they
with locally isotropic behavior, and the nal approximation used, adapt over time, we analyze the tone mapping over time in a
with gradient formulation and kernel sizes described above. For scene with changing lighting conditions. The sequence used in this
the anisotropic diffusion and its isotropic modi cation the diffusion demonstration, show a static scene where a light bulb is switch on
rate ( in the diffusion equation) is decreased with increasing iter- and off, Figure 8(a-b). The output of the TMO at two pixel positions
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Figure 7: Mean squared error for different number of diffusion
iterations used. The jaggedness of the isotropic diffusion approxi-
mation is due to the discrete gradient evaluations for the edge-stop
function.

are plotted in Figure 8(c-d), showing the effect of using the differ-
ent features of the tone curve. The extracted details are strongly
enhanced before being added back to the tone mapped image in or-
der to highlight the in uence of the noise-dependent local contrast
control.

Adding the noise-aware capabilities, the tone mapping output at
both pixels show reduced temporal uctuations. Also the tone re-
production is shifted towards lower intensities to better conceal the
noise.

Using local tone curves, the dynamic range can be further reduced.
This is apparent analyzing the brighter pixel, for which the tone
curve adapts to map it to a darker tone. The effect is that the in-
tensity of the two pixels are at about the same level after the local
curves have been applied.

Finally, utilizing a temporal edge-stopping lter there is a rapid
transition between the different lighting conditions, preventing the
overshoot created by the IIR low-pass lter.
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(a) Gamma mapped HDR input (b) Mal-adaptation TMO [Irawan et &lc) Display adaptive TMO [Mantiuk et a{d) Virtual exposures TMO [Bennett and

2005] 2008] McMillan 2005]
(e) Temporal coherence TMO [Boita(ff Zonal temporal coherence TM@) Motion path ltering TMO [Aydin (h) Our method
etal. 2012] [Boitard et al. 2014] et al. 2014]

Figure 3: Tone mapping results of tHeokersequence, with highlighted details. To compare our method with the Virtual exposures TMO in terms of detail reproduction, the operators
have been set to enhance details slightly (scaling 1.5), to facilitate comparison. Video frame from [Froehlich et al. 2014].



(a) Gamma mapped HDR input (b) Mal-adaptation TMO [Irawan et al. 2005]

(c) Display adaptive TMO [Mantiuk et al. 2008] (d) Virtual exposures TMO [Bennett and McMillan 2005]
(e) Temporal coherence TMO [Boitard et al. 2012] (f) Zonal temporal coherence TMO [Boitard et al. 2014]
(g) Motion path Itering TMO [Aydin et al. 2014] (h) Our method

Figure 4: Tone mapping results of ti@arssequence. Video frame from [Froehlich et al. 2014].



(a) Gamma mapped HDR input (b) Mal-adaptation TMO [Irawan et al. 2005]

(c) Display adaptive TMO [Mantiuk et al. 2008] (d) Virtual exposures TMO [Bennett and McMillan 2005]
(e) Temporal coherence TMO [Boitard et al. 2012] (f) Zonal temporal coherence TMO [Boitard et al. 2014]
(g) Motion path Itering TMO [Aydin et al. 2014] (h) Our method

Figure 5: Tone mapping results of tf&howgirlsequence. Video frame from [Froehlich et al. 2014].



(a) Gamma mapped HDR input (b) Mal-adaptation TMO [Irawan et al. 2005]

(c) Display adaptive TMO [Mantiuk et al. 2008] (d) Virtual exposures TMO [Bennett and McMillan 2005]
(e) Temporal coherence TMO [Boitard et al. 2012] (f) Zonal temporal coherence TMO [Boitard et al. 2014]
(g) Motion path Itering TMO [Aydin et al. 2014] (h) Our method

Figure 6: Tone mapping results of tf&mith hammeringequence. Video frame from [Froehlich et al. 2014].
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Figure 8: The plots show the tone mapping result at the marked blue and red points in the top images. The different curves are produced
by adding different properties in the tone curve evaluation; noise-aware tone curve and details scaling, local tone curves, and a temporal
edge-stopping lter. The temporal Iter used before applying the edge-stop function is a low-pass IIR lter.



